RESULT ON PSEUDO – HAMILTONIAN COMPLETE GRAPHS

S.V. Madava SarmaA*, T. Ravi KumarB, T. V. Pradeep KumarC

A Dept. of mathematics, K.L. University, Vaddeswaram Post, Guntur District, Andhra Pradesh.
B Dept. of computer science, K. L. University, Vaddeswaram Post, Guntur District, Andhra Pradesh.
C Dept. of mathematics, A. N. U. College of Engineering, Acharya Nagarjuna University.

ABSTRACT

In 1856, Hamiltonian introduced the Hamiltonian Graph where a Graph which is covered all the vertices without repetition and end with starting vertex. In this Paper I would like to prove Result on pseudo – Hamiltonian Complete Graphs.

\textbf{Keywords:} Graph, Hamiltonian Graph, Complete Graph, Neighborhood, Locally Complete Graph.
INTRODUCTION:

Given a graph G and a positive integer k, denote by $G[k]$ the graph obtained from G by replacing each vertex of G with an independent set of size k. A graph G is called pseudo-k Hamiltonian-complete if $G[k]$ is Hamiltonian-complete, i.e., every two distinct vertices of $G[k]$ are complete by a Hamiltonian path.

A graph G is called pseudo Hamiltonian-complete if it is pseudo-k Hamiltonian-complete for some positive integer k.

This paper proves that a graph G is pseudo-Hamiltonian-complete if and only if for every non-empty proper subset X of $V(G)$, $|NG(X)| > |X|$.

Given a graph G and a positive integer k, denote by $G[k]$ the graph obtained from G by replacing each vertex of G with an independent set of size k.

To be precise, $G[k]$ has vertex set $\{v_i : v \in V(G); i=1,2,...,k\}$, two vertices v_i and u_j are adjacent if and only if vu is an edge of G.

A graph G is called pseudo-k Hamiltonian-complete if $G[k]$ is Hamiltonian-complete, i.e., every two distinct vertices of $G[k]$ are complete by a Hamiltonian path. Suppose G is a graph and x and y are vertices of G.

An x-y walk W of G is called a regular Hamiltonian walk if there is a positive integer k such that each vertex of $V(G)$ occurs exactly k times in W. It is easy to see that if G is pseudo-Hamiltonian-complete, then for every pair of distinct vertices x and y of G there exists an x-y regular Hamiltonian walk.

An x-y walk W is called a pseudo-edge if there is an integer $k>0$ such that each vertex of $V(G)$ – $\{x; y\}$ occurs k times in W, and each of x and y occurs $(k + 1)$ times in W.

We are interested in graphs for which every pair of distinct vertices is complete by a pseudo-edge. Given a pseudo-Hamiltonian-complete graph G, we denote by $p(G)$ the minimum number k for which $G[k]$ is Hamiltonian complete. we prove that any pseudo-Hamiltonian-connected graph with a Hamiltonian cycle is pseudo-2 Hamiltonian-complete.

1.1 Definition: A graph – usually denoted $G(V,E)$ or $G = (V,E)$ – consists of set of vertices V together with a set of edges E. The number of vertices in a graph is usually denoted n while the number of edges is usually denoted m.

1.2 Definition: Vertices are also known as nodes, points and (in social networks) as actors, agents or players.

1.3 Definition: Edges are also known as lines and (in social networks) as ties or links. An edge $e = (u,v)$ is defined by the unordered pair of vertices that serve as its end points.

1.4 Example: The graph depicted in Figure 1 has vertex set $V = \{a,b,c,d,e,f\}$ and edge set $E = \{(a,b),(b,c),(c,d),(c,e),(d,e),(e,f)\}$.

![Figure 1](image)

1.5 Definition: Two vertices u and v are adjacent if there exists an edge (u,v) that connects them.

1.6 Definition: An edge (u,v) is said to be incident upon nodes u and v.

1.7 Definition: An edge $e = (u,u)$ that links a vertex to itself is known as a self-loop or reflexive tie.

1.8 Definition: Every graph has associated with it an adjacency matrix, which is a binary $n \times n$ matrix A in which $a_{ij} = 1$ and $a_{ji} = 1$ if vertex v_i is adjacent to vertex v_j, and $a_{ij} = 0$ and $a_{ji} = 0$ otherwise. The natural graphical representation of an adjacency matrix is a table, such as shown below.

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>b</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>c</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>d</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>e</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>f</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

Adjacency matrix for graph in Figure 1.

1.9 Definition: Examining either Figure 1 or given adjacency Matrix, we can see that not every vertex is adjacent to every other. A graph in which all vertices are adjacent to all others is said to be complete.

1.10 Definition: While not every vertex in the graph in Figure 1 is adjacent, one can construct a sequence of adjacent vertices from any vertex to any other. Graphs with this property are called connected.
1.11 Note: Reachability. Similarly, any pair of vertices in which one vertex can reach the other via a sequence of adjacent vertices is called reachable. If we determine reachability for every pair of vertices, we can construct a reachability matrix R such as depicted in Figure 2. The matrix R can be thought of as the result of applying transitive closure to the adjacency matrix A.

![Figure 2](image)

1.12 Definition: A walk is closed if $v_o = v_n$. degree of the vertex and is denoted $d(v)$.

1.13 Definition: A tree is a connected graph that contains no cycles. In a tree, every pair of points is connected by a unique path. That is, there is only one way to get from A to B.

![Figure 3](image)

1.14 Definition: A spanning tree for a graph G is a sub-graph of G which is a tree that includes every vertex of G.

1.15 Definition: The length of a walk (and therefore a path or trail) is defined as the number of edges it contains. For example, in Figure 3, the path a,b,c,d,e has length 4.

1.16 Definition: The number of vertices adjacent to a given vertex is called the degree of the vertex and is denoted $d(v)$.

1.17 Definition: An Eulerian circuit in a graph G is circuit which includes every vertex and every edge of G. It may pass through a vertex more than once, but because it is a circuit it traverse each edge exactly once. A graph which has an Eulerian circuit is called an Eulerian graph. An Eulerian path in a graph G is a walk which passes through every vertex of G and which traverses each edge of G exactly once.

1.18 Example: Königsberg bridge problem: The city of Königsberg (now Kaliningrad) had seven bridges on the Pregel River. People were wondering whether it would be possible to take a walk through the city passing exactly once on each bridge. Euler built the representative graph, observed that it had vertices of odd degree, and proved that this made such a walk impossible. Does there exist a walk crossing each of the seven bridges of Königsberg exactly once?

Figure 4: Königsberg problem

HAMILTONIAN GRAPHS, COMPLETE GRAPHS AND PSEUDO-HAMILTONIAN – COMPLETE

2.1 Definition: A Hamilton circuit is a path that visits every vertex in the graph exactly once and return to the starting vertex. Determining whether such paths or circuits exist is an NP-complete problem. In the diagram below, an example Hamilton Circuit would be AEFGCDBA.

2.2 Example:

Figure: Hamilton Circuit would be AEFGCDBA.

2.3 Definition: Compete Graph: A simple graph in which there exists an edge between every pair of vertices is called a complete graph.

2.4 Theorem: Suppose G is pseudo-Hamiltonian - Complete. If G has a Hamiltonian cycle then p(G) ≤ 2.

Proof. Suppose G is pseudo-Hamiltonian- Complete and has a Hamiltonian cycle.

By Known theorem, for every proper subset X of V(G), |NG(X)| > |X|.

For any (not necessarily distinct) vertices x and y of G, let H(x; y) be the sub-multi graph of G defined as in the proof of known theorem.

Namely, when x ≠ y, each of x and y has degree 1 and every other vertex has degree 2 in H(x; y); when x = y, then x has degree 0 and every other vertex has degree 2 in H(x; x).
Let C be a Hamiltonian cycle of G.

Then $H = C \cup H(x; y)$ is a complete sub-multigraph of G such that when $x \neq y$ then $d_H(x) = d_H(y) = 3$ and $d_H(u) = 4$ for $u \neq x, y$;

and

when $x = y$ then $d_H(x) = 2$ and $d_H(u) = 4$ for $u \neq x$.

Thus, H has an Eulerian trail connecting x and y, which is then an x- y regular Hamiltonian walk of G which traverses each vertex of G exactly twice.

The toughness $t(G)$ of a graph G is defined as

$$t(G) = \min\{|S| / k(G - S) : S \text{ is a vertex cut set of } G\}$$

where $k(G - S)$ is the number of components of $G - S$.

It was conjectured by Chvatal [3] that there is a real number r_0 such that any graph G with $t(G) > r_0$ is Hamiltonian.

Chvatal also conjectured that letting $r_0 = 2$ would be enough.

Note that non-Hamiltonian graphs exist with toughness at least t for each $t < 2$.

While the first conjecture remaining open, the second one is recently disproved by Bauer, Broersma and Veldman.

Conjecture 1. There is a real number $r_0 > 2$ such that for any graph G; if $t(G) > r_0$ then G is pseudo-2 Hamiltonian-connected.

Conjecture 2. There is a real number r_0 and an integer k such that for any graph G; if $t(G) > r_0$ then G is pseudo-k Hamiltonian-connected.

References :

